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Abstract: 

 In this research paper, a swarm evolutionary modeling technique called the Updated Multi-Objective Ant-Lion Optimizer (UMO-

ALO) is applied to the modeling of Open Circuit Voltage (OCV) state-of-charge (SOC) of Lithium-ion cells with cathode-anode 

composition (LiMnO2/Li4TiO). The model approximates the battery SOC by considering several battery cell internal physical 

parameters and a linear fitness function governed by two objectives involving the charge and discharge response of the battery 

cell. Bound limited coefficients of the physical parameters are used in the optimization process. The UMO-ALO uses a special 

update procedure to reduce the computational run-time of standard MO-ALO and hence speeds up the generic optimizer. 
Simulations were performed using a very small real laboratory data obtained from the relevant field studies and for different 

trial-run configurations of UMO-ALO. The results from these simulations show very good fitness response close to zero-margins 

for both trial-run configurations. 

 

Keywords: Cathode-anode composition, Discharge response, Lithium-ion cells, Multi-objective Optimizer, Open-circuit-voltage, 

State-of-charge. 

 

I.           INTRODUCTION 

Coronaviruses The field of direct current (dc) energy storage 

cells is a thriving one considering the vast number of 

applications that requires such form of electricity and the 

relatively simple/flexible storage requirement compared to the 

equivalent alternating current (ac) energy storage systems. 

Some of the key requirements/or benefits of dc cells are 

durability, high ampere capacity, portability, temperate 

operability, stationary operation, longevity (low self-

discharge), low cost, and especially operationally safety (Stan 

et al., 2014). Popular among the dc energy storage systems are 

the class of cells referred to as the Lead acid cells. While these 
cells are popular due to low initial cost but there are not very 

efficient and are characterized by short life spans and safety 

issues (Superlib, 2012). 

In this regard, the Lithium-ion cells are currently gaining 

widespread acceptance and used as a viable source of dc 

energy storage for many purposes particularly in the vehicle 

applications sector.  

Unfortunately, the long-term benefits of Lithium-ion cells may 

be inhibited by certain techno-economic factors during actual 

production modeling necessitating a more thorough evaluation 

of production processes. In part, these factors may be largely 
attributed to the wide variations in power densities and in turn 

for a variety of specified battery chemistries making it difficult 

to describe cell output voltage states using simple process 

models (Burke & Miller, 2009). As having good models is 

essential for gaining insight into battery cell operation and 

efficient evaluations prior to production and operational 

service, current attempts at improving the performance of 

Lithium-ion cell design processes resort to the use of high-

level data-driven model simulations including but not limited 

to standard regressors, neural networks and more recently 

evolutionary programming systems (Meng et al., 2018; Dong 

et al., 2015; Bruce et al., 2017). These more advanced model 
simulator techniques attempt to describe the cell output 

voltage state with respect to standard electro-physical 

parameters such as the cell charge current, cell capacity, 

specific capacity and energy in a data-driven context. 

However, the solutions in such models may result in sub-

optimality, loss of diversity and/or inadequate (complicated) 

models. In addition, fitness function models exploited in such 

solutions are usually very constrained to single objectives 

lacking in diversity and distributed processing. 

In this research paper, a more powerful and novel data-driven 

swarm evolutionary approach called the Updated Multi-

Objective Ant Lion Optimizer (UMO-ALO) for speeding-up 
and further enhancing the model optimization of the Lithium-

ion cell is proposed. The novelty of the proposed UMO-ALO 

lies in the employment of a unique update process that reduces 

the computational run-time of standard MO-ALO and in 

addition exploits a linear fitness function model thereby 

enhancing and greatly simplifying the modeling process. It 

also uses a very small dataset making it more difficult for the 

optimizer to solve. 

In the subsequent section of Section 2, a review of existing 

studies in the state-of-the-art for Lithium-ion modeling is 

presented. In the Section 3, the methodology employed 
including a first-order transient battery model and the 

proposed UMO-ALO methodology is described and its 

motivational parameters clearly defined. Section 4 presents 
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simulation results and in Section 5 we discuss the results and 

present our conclusions. 

II. RELATED RESEARCHES 

Lithium-ion research is an ongoing activity with a great 

number of researches being churned out on a yearly basis. In 
the field of modeling and optimization, the research activities 

primarily border on how to optimize the battery Open Circuit 

Voltage (OCV) charge and discharge states considering the 

battery cell output voltage and internal cell chemistries or 

parameters. 

 

Some existing researches using simple battery models with 

electrochemical and thermal models can be found in (Benger 

et al., 2009) and in (Huria et al., 2012) where iterative 

discharge profiling based on single-cell thermal model was 

adopted. In (Schönberger, 2013), the author used the current 
and temperature dependent factors for battery state of 

discharge modeling. Also, in (Einhorn et al., 2010a), simple 

interpolation techniques were employed for battery cell state 

of charge (SOC) modeling, and in (Vyroubal et al., 2014) an 

exponential-time zone model was proposed for modeling 

battery charge/discharge cycles and simulated in the 

MATLAB-SIMULINK program. 

  

Furthermore, attempts at optimization approaches have been 

investigated in (Einhorn et al., 2010b) where a GPS Hooke-

Jeeves Optimizer was applied to the modeling of battery SOC 
considering an integral-square of the difference between 

estimated and actual battery cell voltage. (Castanho et al., 

2022) proposed the use of a Multiple Linear Regression 

(MLR) approach for battery cell SOC estimation in which the 

free coefficients of the MLR are trained by a Particle Swarm 

Optimizer (PSO). 

 

While the aforementioned techniques have been successfully 

applied to the modeling of a variety of cell types, the problem 

still persist as to how best they represent real battery operation 

in a real-world context. Thus, the current approaches should 

emphasize data-driven solutions as SOC parameters can be 
analyzed and measured particularly with very small datasets. 

 

In this research paper, an approach inspired by the intelligent 

behavior of the winged insects called ant-lions is exploited in 

a multi-objective way for battery SOC modeling using very 

small data obtained from real laboratory measurements. 

 

III. MATERIALS AND METHODS 

In this section, the approach for modeling battery SOC is 

presented. The approach considers the first-order transient 

response model and small-scale laboratory results for the 

LiMnO2/Li4TiO cell as described in (Lin et al., 2012). It also 

presents details of the UMO-ALO technique proposed in this 

research paper. 

First-Order Transient Response (FORT) Model 

In order to describe the OCV of a battery cell, the First-Order 

Transient Response (FOTR) model (Lin et al., 2012) is 

employed. 

The model describes the OCV as a function of the battery 

cell's state-of-charge (SOC) and in addition the variation of 

R0, R1, and C1 with the SOC where: 

R0 = the cell internal ohmic resistance, mΩ  

R1 = the cell polarized resistance, mΩ and 

C1 = the cell polarized capacitance μF. 

 

 

 

 

 

 

 

Figure 1: FOTR Model of a Battery Cell (Source: Lin et al., 

2012).  

In Figure 1 is shown the schematic of the FOTR model as 

proposed in (Lin et al., 2012). The variables (cell parameters) 

R0, R1, and C1 are typically measured at a given SOC in a 

laboratory-type environment and further estimated using a 
model-fitting program for calibration purposes. The measured 

values can also be used as inputs to an optimization program to 

build correlations with SOC as target in the model-fitting 

context. 

 
To build a charge and/or discharge step-pulse during the 
estimation of the aforementioned variables, a time constant is 
computed as: 

τ = R1 × C1                    (1) 

Updated Multi-objective Ant-lion Optimizer 

The Updated Multi-objective Ant-lion Optimizer (UMO-ALO) 
is an attempt at developing a more time responsive 
optimization process. The Ant Lion Optimizer will be 
discussed here and then the technique of updates to improve 
speed is presented next. 

Ant Lion Optimizer 

Ant-Lion Optimizer (ALO) is a data-driven metaheuristic 
inspired by the intelligent random walk process of winged 
insects called ant-lions while they search for their prey 
(Mirjalili et al., 2017). The ALO borrows from the principles 
of dominance, fitness, coverage and pareto-optimality. 

Fundamentally, the ALO comprise of 8 key phases: 

 Random-walk phase 

 Boundary conditioning phase 

 Sliding ants mimic phase 

 Entrapment phase 
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 Ant-trap phase 

 Ant-capture and pit reconstruction phase 

 Elitist ants’ storage phase 

 Pareto-optimal and archival storage phase 

 

The above phases are calculated using the computational model 
formulas as summarized in Table 1. Full details of the behavior 
of these models are provided in (Mirjalili et al., 2016). 

Considering the case of a multi-objective solution process and 
any underlying boundary constrains,  
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Following a linear-curve fitting model, the estimated states of 

charge (SOC) and discharge (SODSCH) cycles are expressed 

as: 
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TABLE I COMPUTATIONAL MODELS OF THE ANT-LION OPTIMIZER 

Phase id Description Model 

1 Random-walk phase 

 

 

2 Boundary conditioning 

phase  

3 Sliding ants mimic phase 

   ,  ,  

4 Entrapment phase 
 

 

5 Ant-trap phase 

, 

Roulette-wheel 
 

n = length(w) 

6 Ant-capture and pit 
reconstruction phase 

 

7 Elitist ants storage phase 

 

8 Pareto-optimal and archival 

storage phase , Archive Improvement 

, Archive Decongestion 
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IV. SIMULATION RESULTS 

The results considering the internal battery cell parameters 
described earlier in Section 3 (sub-section 3.1) are presented in 
this section. The simulation data, UMO-ALO settings and the 
optimizer boundary conditions for generating the results are as 
provided in Tables 2, 3 and 4 respectively. The simulation uses 
a limited (very small) dataset which makes it especially more 
challenging for the algorithm to solve. 

The simulations are performed in two parts; first part is 

conducted for 3 trial runs and at 100 iterations. The second part 

is conducted for only a single trial run at 5000 iterations.  

 

TABLE 2: SIMULATION DATASET   

SOC Discharge Charge 

R0 

(mΩ) 

R1 

(mΩ) 

τ 

(sec) 

R0 

(mΩ) 

R1 

(mΩ) 

τ 

(sec) 

0.10 1.97 0.60 25 1.40 0.49 13 

0.30 1.54 0.68 32 1.22 0.56 21 

0.50 1.23 0.31 19 1.13 0.33 19 

0.70 1.17 0.37 23 1.07 0.40 24 

0.90 1.13 0.45 24 1.04 0.55 31 

 

 

TABLE 3: UMO-ALO OPTIMIZER PARAMETERS 

Parameter Default Value 

Maximum Iteration 100 

Number of Search Agents 100 

Maximum Storage Size of the 

Archive 100 

 

 

TABLE 4: OPTIMIZER BOUNDARIES FOR DECISION 

VARIABLES 

Optimizer Decision 

Variable 

Min Value Max Value 

kc1 0.002 5.0 

kc2 0.002 5.0 

kc3 0.002 5.0 

kd1 0.002 5.0 

kd2 0.002 5.0 
kd3 0.002 5.0 

Kc -0.002 0.1 

Kd -2.000 1.0 

 

Battery SOC Results (100iterations) 

The fitness response plots using default settings of the UMO-

ALO (see Table 3) and considering the optimizer boundaries 

(Table 4) are as shown in Figure 2, Figure 3 and Figure 4 for 

the trial runs 1, 2 and 3 in that order. Also shown in Table 5 

are the numerical results of the optimized decision variables 

(ODVs). 

 

 

 

 

 

TABLE 5: OPTIMIZED DECISION VARIABLES (ODVS) 

AT 100ITERATIONS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Fitness Response for Trial 1, Default-setting, and 
100iterations. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Fitness Response for Trial 2, Default-setting, and 

100iterations. 
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Figure 4: Fitness Response for Trial 3, Default-setting, 

100iterations 

 

Battery SOC Results (5000iterations) 

In this part, the maximum number of iterations was increased 

from default setting of 100 to 5000 iterations to verify if there 
was any appreciable improvement in fitness response. The 

fitness response plot for this case is as shown in Figure 5. Also, 

the solved ODVs as a result of the fitting process of UMO-

ALO are as shown in Table 6. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Fitness Response for 5000iterations 

 

TABLE 6: OPTIMIZED DECISION VARIABLES (ODVS) 

AT 5000ITERATIONS 

 

 

 

 

 

 

 

V. DISCUSSION AND CONCLUTION 

This research study has proposed an Updated Multi-Objective 

Ant-Lion Optimizer (UMO-ALO) for modeling of Open 

Circuit Voltage (OCV) state-of-charge (SOC) of Lithium-ion 

cells with cathode-anode composition (LiMnO2/Li4TiO). The 
proposed approach is based on the optimization of real time 

data obtained from laboratory-type battery cell 

charge/discharge cycle measurements while considering the 

First-Order Transient Response (FOTR) mode. 

Basing on a dual objective of minimizing the battery cell SOC 

error difference for the simultaneous case of charge and 

discharge cycles, a model fit describing the SOC for the 

aforementioned cell composition was obtained after different 

UMO-ALO trial run simulation configurations. 

Considering a default UMO-ALO trial run of 100iterations, a 

fitness response close to the zero-margin is clearly observable 
(see Figure 2 – Figure 4). Also, the estimated coefficients of 

the battery cell FOTR model parameters for this configuration 

are as shown in Table 5. Though, there are some variations in 

the result shown in Table 5, the fitness response is still 

adequate for any of the trial runs. 

By increasing the trial run from default value to 

5000iterations, a much closer fit to the zero-margin is 

obtainable. However, the error margins are still comparable to 

that of the default trial runs. 

Thus, basing on the aforementioned results, and using very 

small training dataset, the UMO-ALO is recommended as an 
approximate model for the modeling OCV-SOC of Lithium-

ion cells. 
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NOMENCLATURE 

cumsum  -    a cumulative sum function 

n  -  maximum number of iterations of the ALO 

t  -  iteration step  

r  -  random function 

ia  -  a lower-bound of random walk in i-th ant variable 

ib  -  an upper-bound of random walk in i-th ant variable 

t

il  - minimum of i-th ant variable in t-th iteration 

t

iu -  maximum of i-th ant variable in t-th iteration 

I - decrement ratio 

T -  maximum number of iterations 

w  - exploitation (accuracy adjustment) factor 

t

jAntlion  - position of the chosen j-th ant-lion at t-th 

iteration 

t

iAnt -  position of the captured i-th ant at t-th iteration 

t

AR  -  ant random walk selected by roulette wheel at t-th 

iteration 

t

ER  - ant random walk around elite at t-th iteration 

kc1 - Charging Coefficient of R0 

kc2 - Charging Coefficient of R1 

kc3 - Charging Coefficient of τ 

kd1 - Discharging Coefficient of R0 

kd2 - Discharging Coefficient of R1 

kd3 - Discharging Coefficient of τ 

kc - Charging constant term 

kd - Discharging constant term 
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